當前位置:網站首頁>神經網絡中的反向傳播&&參數更新

神經網絡中的反向傳播&&參數更新

2022-05-13 17:33:24追光少年羽

1,前言

最近在看機器學習神經網絡方面的知識,也看了很多關於反向傳播算法原理的介紹,有一篇文章寫的很好,在這裏記錄下,並且加入自己的理解。反向傳播法其實是神經網絡的基礎了,但是很多人在學的時候總是會遇到一些問題,或者看到大篇的公式覺得好像很難就退縮了,其實不難,就是一個鏈式求導法則反複用。如果不想看公式,可以直接把數值帶進去(這種學習方法很重要),實際的計算一下,體會一下這個過程之後再來推導公式,這樣就會覺得很容易了。

說到神經網絡,大家看到這個圖應該不陌生:

  這是典型的三層神經網絡的基本構成,Layer L1是輸入層,Layer L2是隱含層,Layer L3是隱含層,我們現在手裏有一堆數據{x1,x2,x3,...,xn},輸出也是一堆數據{y1,y2,y3,...,yn},現在要他們在隱含層做某種變換,讓你把數據灌進去後得到你期望的輸出。如果你希望你的輸出和原始輸入一樣,那麼就是最常見的自編碼模型(Auto-Encoder)。可能有人會問,為什麼要輸入輸出都一樣呢?有什麼用啊?其實應用挺廣的,在圖像識別,文本分類等等都會用到,我會專門再寫一篇Auto-Encoder的文章來說明,包括一些變種之類的。如果你的輸出和原始輸入不一樣,那麼就是很常見的人工神經網絡了,相當於讓原始數據通過一個映射來得到我們想要的輸出數據,也就是我們今天要講的話題。

2,例程

  本文直接舉一個例子,帶入數值演示反向傳播法的過程,公式的推導等到下次寫Auto-Encoder的時候再寫,其實也很簡單,感興趣的同學可以自己推導下試試:)(注:本文假設你已經懂得基本的神經網絡構成,如果完全不懂,可以參考Poll寫的筆記:[Mechine Learning & Algorithm] 神經網絡基礎

  假設,你有這樣一個網絡層:

  第一層是輸入層,包含兩個神經元i1,i2,和截距項b1;第二層是隱含層,包含兩個神經元h1,h2和截距項b2,第三層是輸出o1,o2,每條線上標的wi是層與層之間連接的權重,激活函數我們默認為sigmoid函數。

  現在對他們賦上初值,如下圖:

         其中,輸入數據  i1=0.05,i2=0.10;

     輸出數據 o1=0.01,o2=0.99;

     初始權重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

  目標:給出輸入數據i1,i2(0.05和0.10),使輸出盡可能與原始輸出o1,o2(0.01和0.99)接近。

 

Step 1 前向傳播

1.輸入層---->隱含層:

  計算神經元h1的輸入加權和:

神經元h1的輸出o1:(此處用到激活函數為sigmoid函數):

同理,可計算出神經元h2的輸出o2:

  

2.隱含層---->輸出層:

  計算輸出層神經元o1和o2的值:

 

這樣前向傳播的過程就結束了,我們得到輸出值為[0.75136079 , 0.772928465],與實際值[0.01 , 0.99]相差還很遠,現在我們對誤差進行反向傳播,更新權值,重新計算輸出。

 

Step 2 反向傳播

1.計算總誤差

總誤差:(square error)

但是有兩個輸出,所以分別計算o1和o2的誤差,總誤差為兩者之和:

 2.隱含層---->輸出層的權值更新:

以權重參數w5為例,如果我們想知道w5對整體誤差產生了多少影響,可以用整體誤差對w5求偏導求出:(鏈式法則)

 下面的圖可以更直觀的看清楚誤差是怎樣反向傳播的:

 現在我們來分別計算每個式子的值:

計算:

計算:

 (這一步實際上就是對sigmoid函數求導,比較簡單,可以自己推導一下)

 最後三者相乘:

 這樣我們就計算出整體誤差E(total)對w5的偏導值。

回過頭來再看看上面的公式,我們發現:

 

為了錶達方便,用

 來錶示輸出層的誤差:

 因此,整體誤差E(total)對w5的偏導公式可以寫成:

如果輸出層誤差計為負的話,也可以寫成:

最後我們來更新w5的值:

 (其中,

是學習速率,這裏我們取0.5)

同理,可更新w6,w7,w8:

 

3.隱含層---->隱含層的權值更新:

方法其實與上面說的差不多,但是有個地方需要變一下,在上文計算總誤差對w5的偏導時,是從out(o1)---->net(o1)---->w5,但是在隱含層之間的權值更新時,是out(h1)---->net(h1)---->w1,而out(h1)會接受E(o1)和E(o2)兩個地方傳來的誤差,所以這個地方兩個都要計算。

計算:

先計算:

同理,計算出:      

兩者相加得到總值:

再計算:

再計算:

最後,三者相乘:

 為了簡化公式,用sigma(h1)錶示隱含層單元h1的誤差:

最後,更新w1的權值:

同理,額可更新w2,w3,w4的權值:

這樣誤差反向傳播法就完成了,最後我們再把更新的權值重新計算,不停地迭代,在這個例子中第一次迭代之後,總誤差E(total)由0.298371109下降至0.291027924。迭代10000次後,總誤差為0.000035085,輸出為[0.015912196,0.984065734](原輸入為[0.01,0.99]),證明效果還是不錯的。

3,代碼實現

#coding:utf-8
import random
import math

#
#   參數解釋:
#   "pd_" :偏導的前綴
#   "d_" :導數的前綴
#   "w_ho" :隱含層到輸出層的權重系數索引
#   "w_ih" :輸入層到隱含層的權重系數的索引

class NeuralNetwork:
    LEARNING_RATE = 0.5

    def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
        self.num_inputs = num_inputs

        self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
        self.output_layer = NeuronLayer(num_outputs, output_layer_bias)

        self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
        self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)

    def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
        weight_num = 0
        for h in range(len(self.hidden_layer.neurons)):
            for i in range(self.num_inputs):
                if not hidden_layer_weights:
                    self.hidden_layer.neurons[h].weights.append(random.random())
                else:
                    self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
                weight_num += 1

    def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
        weight_num = 0
        for o in range(len(self.output_layer.neurons)):
            for h in range(len(self.hidden_layer.neurons)):
                if not output_layer_weights:
                    self.output_layer.neurons[o].weights.append(random.random())
                else:
                    self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
                weight_num += 1

    def inspect(self):
        print('------')
        print('* Inputs: {}'.format(self.num_inputs))
        print('------')
        print('Hidden Layer')
        self.hidden_layer.inspect()
        print('------')
        print('* Output Layer')
        self.output_layer.inspect()
        print('------')

    def feed_forward(self, inputs):
        hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
        return self.output_layer.feed_forward(hidden_layer_outputs)

    def train(self, training_inputs, training_outputs):
        self.feed_forward(training_inputs)

        # 1. 輸出神經元的值
        pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
        for o in range(len(self.output_layer.neurons)):

            # ∂E/∂zⱼ
            pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])

        # 2. 隱含層神經元的值
        pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
        for h in range(len(self.hidden_layer.neurons)):

            # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
            d_error_wrt_hidden_neuron_output = 0
            for o in range(len(self.output_layer.neurons)):
                d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]

            # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
            pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()

        # 3. 更新輸出層權重系數
        for o in range(len(self.output_layer.neurons)):
            for w_ho in range(len(self.output_layer.neurons[o].weights)):

                # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
                pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight

        # 4. 更新隱含層的權重系數
        for h in range(len(self.hidden_layer.neurons)):
            for w_ih in range(len(self.hidden_layer.neurons[h].weights)):

                # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
                pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight

    def calculate_total_error(self, training_sets):
        total_error = 0
        for t in range(len(training_sets)):
            training_inputs, training_outputs = training_sets[t]
            self.feed_forward(training_inputs)
            for o in range(len(training_outputs)):
                total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
        return total_error

class NeuronLayer:
    def __init__(self, num_neurons, bias):

        # 同一層的神經元共享一個截距項b
        self.bias = bias if bias else random.random()

        self.neurons = []
        for i in range(num_neurons):
            self.neurons.append(Neuron(self.bias))

    def inspect(self):
        print('Neurons:', len(self.neurons))
        for n in range(len(self.neurons)):
            print(' Neuron', n)
            for w in range(len(self.neurons[n].weights)):
                print('  Weight:', self.neurons[n].weights[w])
            print('  Bias:', self.bias)

    def feed_forward(self, inputs):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.calculate_output(inputs))
        return outputs

    def get_outputs(self):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.output)
        return outputs

class Neuron:
    def __init__(self, bias):
        self.bias = bias
        self.weights = []

    def calculate_output(self, inputs):
        self.inputs = inputs
        self.output = self.squash(self.calculate_total_net_input())
        return self.output

    def calculate_total_net_input(self):
        total = 0
        for i in range(len(self.inputs)):
            total += self.inputs[i] * self.weights[i]
        return total + self.bias

    # 激活函數sigmoid
    def squash(self, total_net_input):
        return 1 / (1 + math.exp(-total_net_input))


    def calculate_pd_error_wrt_total_net_input(self, target_output):
        return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();

    # 每一個神經元的誤差是由平方差公式計算的
    def calculate_error(self, target_output):
        return 0.5 * (target_output - self.output) ** 2

    
    def calculate_pd_error_wrt_output(self, target_output):
        return -(target_output - self.output)

    
    def calculate_pd_total_net_input_wrt_input(self):
        return self.output * (1 - self.output)


    def calculate_pd_total_net_input_wrt_weight(self, index):
        return self.inputs[index]


# 文中的例子:

nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
for i in range(10000):
    nn.train([0.05, 0.1], [0.01, 0.09])
    print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))


#另外一個例子,可以把上面的例子注釋掉再運行一下:

# training_sets = [
#     [[0, 0], [0]],
#     [[0, 1], [1]],
#     [[1, 0], [1]],
#     [[1, 1], [0]]
# ]

# nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
# for i in range(10000):
#     training_inputs, training_outputs = random.choice(training_sets)
#     nn.train(training_inputs, training_outputs)
#     print(i, nn.calculate_total_error(training_sets))

        穩重使用的是sigmoid激活函數,實際還有幾種不同的激活函數可以選擇,具體的可以參考文獻[3],最後推薦一個在線演示神經網絡變化的網址:Neural Network | Emergent Mind,可以自己填輸入輸出,然後觀看每一次迭代權值的變化,很好玩~如果有錯誤的或者不懂的歡迎留言:)

版權聲明
本文為[追光少年羽]所創,轉載請帶上原文鏈接,感謝
https://cht.chowdera.com/2022/133/202205131729440914.html

隨機推薦